The iSEEDESeq2Results
class is used to provide a common interface to differential expression results produced by the DESeq2 package.
It provides methods to access common differential expression statistics (e.g., log2 fold-change, p-value, log2 average abundance).
Details
This class inherits all its slots directly from its parent class DataFrame.
Constructor
iSEEDESeq2Results(data, row.names = rownames(data))
creates an instance of a iSEEDESeq2Results
class, with:
data
A
data.frame
produced byDESeq2::results()
orDESeq2::lfcShrink()
.row.names
The character vector of rownames for the SummarizedExperiment object in which the object is to be embedded. Must be a superset of
rownames(data)
.
Supported methods
embedContrastResults(x, se, name, ...)
embedsx
inse
under the identifiername
. SeeembedContrastResults()
for more details.pValue(x)
returns the vector of raw p-values.log2FoldChange(x)
returns the vector of log2-fold-change values.averageLog2(x)
returns the vector of average log2-expression values.
Examples
library(DESeq2)
##
# From DESeq2::DESeq() ----
##
cnts <- matrix(rnbinom(n = 1000, mu = 100, size = 1 / 0.5), ncol = 10)
rownames(cnts) <- paste("Gene", 1:100)
cond <- factor(rep(1:2, each = 5))
# object construction
dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~cond)
#> converting counts to integer mode
# standard analysis
dds <- DESeq(dds)
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> -- note: fitType='parametric', but the dispersion trend was not well captured by the
#> function: y = a/x + b, and a local regression fit was automatically substituted.
#> specify fitType='local' or 'mean' to avoid this message next time.
#> final dispersion estimates
#> fitting model and testing
res <- results(dds)
head(res)
#> log2 fold change (MLE): cond 2 vs 1
#> Wald test p-value: cond 2 vs 1
#> DataFrame with 6 rows and 6 columns
#> baseMean log2FoldChange lfcSE stat pvalue padj
#> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
#> Gene 1 102.5201 -0.727757 0.804034 -0.905132 0.365395 0.960799
#> Gene 2 83.0402 -0.409929 0.563552 -0.727402 0.466979 0.974797
#> Gene 3 85.6498 0.101207 0.521651 0.194013 0.846166 0.974797
#> Gene 4 100.5620 0.197987 0.592194 0.334328 0.738132 0.974797
#> Gene 5 82.6255 -0.541261 0.622164 -0.869965 0.384320 0.960799
#> Gene 6 100.7767 -0.256369 0.715565 -0.358274 0.720138 0.974797
##
# iSEEDESeq2Results ----
##
# Embed the DESeq2 results in the SummarizedExperiment object
dds <- embedContrastResults(res, dds, name = "DESeq2")
##
# Access ----
##
contrastResultsNames(dds)
#> [1] "DESeq2"
contrastResults(dds)
#> DataFrame with 100 rows and 1 column
#> DESeq2
#> <iSEEDESeq2Results>
#> Gene 1 <iSEEDESeq2Results>
#> Gene 2 <iSEEDESeq2Results>
#> Gene 3 <iSEEDESeq2Results>
#> Gene 4 <iSEEDESeq2Results>
#> Gene 5 <iSEEDESeq2Results>
#> ... ...
#> Gene 96 <iSEEDESeq2Results>
#> Gene 97 <iSEEDESeq2Results>
#> Gene 98 <iSEEDESeq2Results>
#> Gene 99 <iSEEDESeq2Results>
#> Gene 100 <iSEEDESeq2Results>
contrastResults(dds, "DESeq2")
#> iSEEDESeq2Results with 100 rows and 6 columns
#> baseMean log2FoldChange lfcSE stat pvalue padj
#> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
#> Gene 1 102.5201 -0.727757 0.804034 -0.905132 0.365395 0.960799
#> Gene 2 83.0402 -0.409929 0.563552 -0.727402 0.466979 0.974797
#> Gene 3 85.6498 0.101207 0.521651 0.194013 0.846166 0.974797
#> Gene 4 100.5620 0.197987 0.592194 0.334328 0.738132 0.974797
#> Gene 5 82.6255 -0.541261 0.622164 -0.869965 0.384320 0.960799
#> ... ... ... ... ... ... ...
#> Gene 96 129.3170 -0.0744697 0.503853 -0.1478006 0.882500 0.974797
#> Gene 97 81.2144 -0.3133681 0.577976 -0.5421822 0.587693 0.974797
#> Gene 98 63.7106 -0.1904979 0.613499 -0.3105104 0.756173 0.974797
#> Gene 99 144.0617 0.1101995 0.693533 0.1588958 0.873751 0.974797
#> Gene 100 102.9799 0.0354005 0.528068 0.0670377 0.946552 0.989373
head(pValue(contrastResults(dds, "DESeq2")))
#> Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6
#> 0.3653954 0.4669795 0.8461658 0.7381317 0.3843196 0.7201381
head(log2FoldChange(contrastResults(dds, "DESeq2")))
#> Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6
#> -0.7277568 -0.4099289 0.1012071 0.1979872 -0.5412611 -0.2563687
head(averageLog2(contrastResults(dds, "DESeq2")))
#> Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6
#> 6.679763 6.375739 6.420378 6.651942 6.368515 6.655019